TEST DESCRIPTION \& RECOMMENDED RANGES

CHLORINE \& BROMINE

Chlorine and bromine both serve as sanitizers to destroy algae, bacteria, and disease-causing organisms. They also oxidize away swimmer wastes and other contaminants. The effectiveness of chlorine is depleted through this process as free chlorine becomes combined chlorine. This kit reads both free and combined chlorine and expresses that result as total chlorine. The bromine reaction differs in that free and combined bromine are each effective sanitizers. The reading is for total bromine.
Recommended Range:
Free Chlorine: 2.0 to 4.0 ppm (spas higher) / Bromine: 4.0 to 6.0 ppm When to Test:
Daily (or as bather load demands)
Potential Problems:

- too low-inadequate sanitation / bacteria \& algae growth - too high-uneconomical use of sanitizer

pH

pH shows whether water is acidic, neutral, or basic (alkaline). At a value of 7 pH is neutral; above 7 water becomes more basic; below 7 more acidic. pH can vary for many reasons: It is affected by some sanitizers and can be altered by the addition of make-up water. pH control is important because it affects bather comfort, sanitizer efficiency, and overall water balance.

Recommended Range:

pH: 7.4 to 7.6
When to Test:
Daily
Potential Problems:

- too low-corrodes surfaces / irritates eyes \& skin
- too high-scale deposits / cloudy water / poor sanitizer efficiency

TOTAL ALKALINITY

Total alkalinity is the measurement of the alkaline materials in your pool or spa water that act as buffering agents to avoid "pH bounce" and to help prevent changes in pH that could result in corrosion and staining. Maintaining the correct total alkalinity in your pool or spa water will help prevent costly equipment repairs and the extra expense of additional treatment chemicals.

Recommended Range

Total alkalinity: 80 to 120 ppm

When to Test:

Weekly
Potential Problems:

- too low-pH difficult to maintain / corrosion tendency
- too high - pH difficult to adjust/ potential for scaling

TROUBLE PREVENTION CHART

SYMPTOM	CAUSE	POTENTIAL SOLUTION
Plaster etching, concrete pitting, grout dissolving.	Imbalanced water.	Have pH, total alkalinity \& calcium hardness levels tested. Balance water with treatment chemicals recommended by your supplier.
Scale on walls \& fixtures. (Common in new inground pools.)		
Corrosion of metal fixtures in contact with pool water. Rust \& copper stains.	Imbalanced water.	Have pH, total alkalinity \& calcium hardness levels tested. Balance water with treatment chemicals recommended by your supplier. Add chelating or sequestering agent per instructions to prevent more stains.
Bleached hair or bathing suits. Eye irritation.	Excessive chlorine.	Add sodium thiosulfate or sodium sulfite to neutralize.
Eye irritation and / or itchy skin. Water has foul odor. Complaints of "too much chlorine" in water.	High combined chlorine, low free chlorine.	Adjust pH to 7.2 - 7.8.* Perform breakpoint chlorination to eliminate combined chlorine. Do not reenter water until free chlorine level drops below 5 ppm.
Skin / eye irritation.	Improper pH.	Adjust pH to 7.2-7.8.*

SYMPTOM	CAUSE	POTENTIAL SOLUTION
Hazy, cloudy water. No sparkle.	Early algae growth.	Superchlorinate or shock.
	Poor filtration.	Check filter for proper operation.
	High pH.	Lower pH to $7.2-7.8$. *

*Always bring total alkalinity into recommended range before adjusting pH.

POOL \& SPA WATER TESTS

Total Chlorine / Total BromineTes

1. Rinse and fill chlorine / bromine cell to mark with water to be tested.
2. Add 5 drops R-0600. Cap and invert to mix.
3. Match color with color standard. Record as parts per million (ppm) total chlorine $\left(\mathrm{Cl}_{2}\right)$ or total bromine $\left(\mathrm{Br}_{2}\right)$. For chlorine: See Dosage Chart for adjustment. For bromine: See manufacturer's instructions for adjustment.
Combined chlorine (chloramines) causes eye irritation and "chlorine" odor. If this occurs, have your pool / spa dealer test for combined chlorine. Note: The DPD version of this test kit uses a different testing method that allows distinction between free and combined chlorine.
4. Keep test kit out of reach of children 2. Read precautions on all labels. 3. Store test kit in cool, dark place. 4. Replace reagents once each year.
5. Do not dispose of solutions in pool or spa.

Instr. \#5816 6. Rinse cells / tubes before and after each test.
7. Obtain samples $18^{\prime \prime}(45 \mathrm{~cm})$ below water surface.
8. Hold dropper bottle vertically when dispensing reagent.

pH Test

1. Rinse and fill pH cell to mark with water to be tested.
2. Add 5 drops R-0014. Cap and invert to mix.
3. Match color with color standard. Record as pH units and save sample if pH needs adjustment. If sample color is between two values, pH is average of the two.

Acid Demand Test/ Base Demand Test

1. Use treated sample from pH test.
2. To LOWER pH, use R-0015.

To RAISE pH, use R-0016.
Add appropriate reagent dropwise. After each drop, count, invert to mix, and compare with color standards until desired pH is matched. See appropriate Dosage Chart to continue.

Total Alkalinity Test

1. Rinse and fill sample tube (\#4034) to 25 mL mark with water to be tested.
2. Add 2 drops R-0007. Swirl to mix.
3. Add 5 drops R-0008. Swirl to mix. Sample will turn green.
4. Add R-0009 dropwise. After each drop, count and swirl to mix until color changes from green to red.
5. Multiply drops in Step 4 by 10. Record as parts per million (ppm) total alkalinity as calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$. See Dosage Charts to continue.

CHLORINE DOSAGE CHART

	TO RAISE CHLORINE 1 PPM USING CHLORINE COMPOUND*					
Volume	\% Available Chlorine					
(gallons / liters)	10\%	12\%	45\%	60\%	65\%	75\%
$250 \mathrm{gal} / 1,000 \mathrm{~L}$	$0.32 \mathrm{floz} / 10.0 \mathrm{~mL}$	0.27 floz $/ 8.35 \mathrm{~mL}$	0.07 oz/2.22g	$0.060 \mathrm{oz} / 1.67 \mathrm{~g}$	$0.0502 / 1.54 \mathrm{~g}$	0.04 oz/1.42g
$400 \mathrm{gal} / 1,500 \mathrm{~L}$	0.51 floz/ 15.0 mL	0.43 floz/ 12.5 mL	$0.12 \mathrm{oz} / 3.33 \mathrm{~g}$	$0.090 \mathrm{z} / 2.50 \mathrm{~g}$	$0.0802 / 2.31 \mathrm{~g}$	$0.0702 / 2.13 \mathrm{~g}$
1,000 gal / 4,000 L	$1.28 \mathrm{floz} / 40.0 \mathrm{~mL}$	1.07 floz / 33.3 mL	0.30 oz/8.89 g	0.22 oz/6.67g	$0.2102 / 6.15 \mathrm{~g}$	0.20 oz/5.63g
5,000 gal/ $20,000 \mathrm{~L}$	6.40 floz / 200 mL	5.33 floz/ 167 mL	$1.480 \mathrm{oz} / 44.4 \mathrm{~g}$	$1.110 \mathrm{oz} / 38.3 \mathrm{~g}$	1.03 oz/30.8 g	$0.9502 / 28.3 \mathrm{~g}$
10,000 gal / 40,000 L	12.8 floz/ 400 mL	10.7 floz/ 333 mL	2.97 oz/88.9 g	2.23 oz/66.7 g	2.05 oz/61.5 g	1.77 oz/56.3g
15,000 gal / 60,000 L	$1.20 \mathrm{pt} / 600 \mathrm{~mL}$	$1.00 \mathrm{pt} / 500 \mathrm{~mL}$	$4.4402 / 133 \mathrm{~g}$	$3.340 \mathrm{oz} / 100 \mathrm{~g}$	3.08 oz/92.3 g	$2.6602 / 84.5 \mathrm{~g}$
20,000 gal / 80,000 L	$1.60 \mathrm{pt} / 800 \mathrm{~mL}$	$1.33 \mathrm{pt} / 667 \mathrm{~mL}$	5.94 oz/ 178 g	$4.450 \mathrm{oz} / 133 \mathrm{~g}$	$4.11 \mathrm{oz} / 123 \mathrm{~g}$	3.77 02/113 g

CHLORINE

If you choose to use chlorine as a disinfectant and sanitizer, learn to use it ECONOMICALLY and EFFECTIVELY.
Effective use is largely dependent on pH. At a high pH (>7.8), chlorine's ability to disinfect is significantly reduced. But at a lower pH (7.2 to 7.8), chlorine's disinfecting ability is enhanced. Therefore, at lower pH levels, you get more disinfection for your money.

Remember:

- Keep the pH at 7.8 or below.
- Keep CHLORINE between 2.0 and 4.0 ppm (spas higher). - Periodically eliminate COMBINED CHLORINE by breakpoint chlorination. (Breakpoint dosage equals 10 times the amount of combined chlorine.) Chlorine-free shocks may be used to aid in the elimination of bather wastes and other organic contaminants that lead to combined chlorine.
'Chlorine products contaid different amounts of available chlorine. Adjust treatment amounts accordingly.
pH DOSAGE CHARTS

pH
To LOWER pH to desired value, add either dry acid (sodium bisulfate) or muriatic acid according to chart.
To RAISE pH to desired value, add soda ash (sodium carbonate) according to chart.

An adjustment in pH can change total alkalinity. Recheck total alkalinity after pH adjustments.
*Sodium bisulfate percentage may vary. Adjust treatment amounts accordingly.

ALKALINITY DOSAGE CHARTS

	TOLOWER ALKALINITY USING DRY ACID (SODIUM BISULFATE, 93.2\%)*	TOLOWER ALKALINITY USING MURIATIC ACID (20° BAUMĖ/31.45\% HCI)	TO RAISE ALKALINITY USING BAKING SODA (SODIUM BICARBONATE, 100\%)
Volume of Water (gallons / liters)	Desired Change in ppm $=10 \mathrm{ppm}$	Desired Change in ppm = 10 ppm	Desired Change in ppm $=10 \mathrm{ppm}$
$250 \mathrm{gal} / 1,000 \mathrm{~L}$	$0.86 \mathrm{oz} / 25.8 \mathrm{~g}$	$0.64 \mathrm{floz} / 20.0 \mathrm{~mL}$	0.56 oz/16.8g
$400 \mathrm{gal} / 1,500 \mathrm{~L}$	$1.3702 / 38.6 \mathrm{~g}$	$1.02 \mathrm{floz/29.9} \mathrm{~mL}$	0.90 oz/25.2g
1,000 gal / 4,000 L	3.44 oz/ 103 g	$2.56 \mathrm{floz} / 79.9 \mathrm{~mL}$	$2.2402 / 67.1 \mathrm{~g}$
5,000 gal / $20,000 \mathrm{~L}$	$1.07 \mathrm{lb} / 515 \mathrm{~g}$	12.8 floz/399 mL	$11.202 / 336 \mathrm{~g}$
10,000 gal / 40,000 L	$2.15 \mathrm{lb} / 1.03 \mathrm{~kg}$	$1.60 \mathrm{pt} / 799 \mathrm{~mL}$	$1.40 \mathrm{lb} / 671 \mathrm{~g}$
15,000 gal / 60,000 L	$3.21 \mathrm{lb} / 1.55 \mathrm{~kg}$	$1.20 \mathrm{qt} / 1.20 \mathrm{~L}$	$2.10 \mathrm{lb} / 1.01 \mathrm{~kg}$
20,000 gal / 80,000 L	$4.30 \mathrm{lb} / 2.06 \mathrm{~kg}$	$1.60 \mathrm{qt} / 1.60 \mathrm{~L}$	$2.80 \mathrm{lb} / 1.34 \mathrm{~kg}$

ALKALINITY

Charts are based on a decrease / increase of 10 ppm . To effect a 20 ppm change, multiply dosage by 2; for 30 ppm, by 3 ; etc.
To LOWER total alkalinity, add either dry acid (sodium bisulfate) or muriatic acid according to chart.
To RAISE total alkalinity, add baking soda (sodium bicarbonate) according to chart.
Note:
An adjustment in total alkalinity can change pH . Recheck pH after total alkalinity adjustments.
*Sodium bisulfate percentage may vary. Adjust treatment amounts accordingly.

